
Flywheel Tools
Release 0.3.0

Apr 13, 2022

Contents:

1 Contents 3
1.1 BIDS & FlywheelTools Explained . 3
1.2 Installation . 4
1.3 Quick start guide . 6
1.4 Step-By-Step Guide . 7
1.5 The Heuristic File . 26
1.6 Usage . 35
1.7 Tips & Tricks: Curating Creatively . 38

2 Indices and tables 41

Index 43

i

ii

Flywheel Tools, Release 0.3.0

FlywheelTools is a suite of software tools for curating your data into BIDS on Flywheel. It’s comprised of 2 parts:

fw-heudiconv, which is a Python-based tool kit for curating BIDS data on the Flywheel platform, and flaudit,
which is a Flywheel project auditor.

Full documentation at readthedocs

License: BSD-3

Contents: 1

http://fw-heudiconv.readthedocs.io/en/latest/?badge=latest
https://circleci.com/gh/PennLINC/fw-heudiconv
https://zenodo.org/record/4752798#.YJwSt5NKg8N
http://fw-heudiconv.readthedocs.io/en/latest

Flywheel Tools, Release 0.3.0

2 Contents:

CHAPTER 1

Contents

1.1 BIDS & FlywheelTools Explained

FlywheelTools consists of two tools — fw-heudiconv and flaudit.

Flywheel HeuDiConv (fw-heudiconv) is based on the popular heudiconv software, “flexible DICOM converter
for organizing brain imaging data into structured directory layouts” [source]. Like heudiconv, fw-heudiconv
makes use of a user-defined heuristic — a discrete set of rules — to standardise naming conventions within the user’s
project directory into BIDS. This is particularly useful in Flywheel, where curation, pre-processing, and analyses are
all automated in the context of BIDS.

BIDS stands for Brain Imaging Data Structure, and is a standard format for organizing and storing brain imaging
data. It’s an organisational standard that makes it easy to share, collaborate on, and analyse your data. Among many
other details, BIDS prioritizes having imaging scans located in a nested directory structure, where the top level is
the subject label, followed by the imaging session label, followed by the modality of measurement. Each imaging
file (typically NIfTI format) must have an associated .json dictionary, known as a sidecar, that stores the image’s
metadata. Additionally, filenames must adhere to a {key}-{value}.{extension} naming convention, where
key-value pairs are separated by underscores _. This makes files very easy to parse by eye, hand, or machine, and if a
BIDS dataset is valid, it can be used as seamless input into a myriad of BIDS-ready processing and analysis pipelines,
officially called BIDS apps.

Learn more about BIDS here.

The goal of fw-heudiconv is to provide researchers with a tool to flexibly and reproducibly curate their Flywheel
datasets into BIDS, that is as powerful as it is easy to use.

When you’re done, you can use flaudit to audit your data and make sure everything went as planned. flaudit
is a containerized gear on Flywheel that loops over the data in your project, and collects data about the sequences that
exist in the project, if and how they were curated into BIDS, and if analysis gears were run on them. One important
feature is the inclusion of a template subject. When specified, flaudit will use that subject’s data as a gold standard
and compare each other subject to them, highlighting:

• If the subject has collected the same scanning sequences as the template

• If the subject has been curated into BIDS identically to the template

3

https://heudiconv.readthedocs.io/en/latest/
https://heudiconv.readthedocs.io/en/latest/

Flywheel Tools, Release 0.3.0

• If the subject has run the same analysis gears as the template. This comparison is sensitive to gear versions, so
you can be sure your subjects ran the same version of algorithms as the template.

The output of the gear is an HTML report that can be opened in your web browser, as well as the accompanying CSVs
that generated it, in case you want to explore the data further.

1.1.1 General Workflow

In fw-heudiconv, the general workflow is as follows:

1. Extract DICOM header information from your data with the tabulate tool

2. Craft a heuristic that can: a) create BIDS-valid filenames, paths, and metadata b) parse the DICOMs to decide
which NIfTIs are assigned to which BIDS names

3. Test & apply these changes on Flywheel with the curate tool

4. Adjust the heuristic as necessary and repeat testing and application

5. Validate and/or export your BIDS-valid data (validate or export tools)

The workflow is illustrated below:

This workflow can also be accomplished on Flywheel through the GUI without the need for command line tools. Each
of the tools is documented in the next section.

1.2 Installation

fw-heudiconv can be run in the Flywheel GUI as a gear, or locally using the Command Line Interface distributed
using pip. flaudit can only be run in the Flywheel GUI.

4 Chapter 1. Contents

Flywheel Tools, Release 0.3.0

Note: FlywheelTools are intended for use with a Flywheel site. At the University of Pennsylvania, our site is available
at upenn.flywheel.io.

To use locally, follow instructions below to set up your system for using fw-heudiconv on your machine:

Estimated time: 15 minutes

1.2.1 Install & start up Miniconda

First, get a package management system. Recommended is miniconda (conda): Conda quickly installs, runs and
updates packages and their dependencies.

https://docs.conda.io/en/latest/miniconda.html.

You can check if you have this successfully by going to the terminal and doing:

$ which conda [macOS]

1.2.2 Start a virtual environment

Use miniconda to create a virtual environment, a restricted workspace where your programs and processes can operate
without affecting everything on your computer. Create an environment called flywheel, in the terminal:

$ conda create -n flywheel anaconda python=3

At the prompt for which packages to install, type y and hit enter. It’s better to have them all, and they will not take up
a lot of space on your machine:

:
:
:
$ wurlitzer pkgs/main/osx-64::wurlitzer-1.0.2-py37_0
$ xlrd pkgs/main/osx-64::xlrd-1.2.0-py37_0
$ xlsxwriter pkgs/main/noarch::xlsxwriter-1.1.8-py_0
$ xlwings pkgs/main/osx-64::xlwings-0.15.8-py37_0
$ xlwt pkgs/main/osx-64::xlwt-1.3.0-py37_0
$ xz pkgs/main/osx-64::xz-5.2.4-h1de35cc_4
$ yaml pkgs/main/osx-64::yaml-0.1.7-hc338f04_2
$ zeromq pkgs/main/osx-64::zeromq-4.3.1-h0a44026_3
$ zict pkgs/main/noarch::zict-1.0.0-py_0
$ zipp pkgs/main/noarch::zipp-0.5.1-py_0
$ zlib pkgs/main/osx-64::zlib-1.2.11-h1de35cc_3
$ zstd pkgs/main/osx-64::zstd-1.3.7-h5bba6e5_0

$ Proceed ([y]/n)?

Activate your environment, so that any packages you install or use stay restricted to this project:

$ source activate flywheel

1.2. Installation 5

https://upenn.flywheel.io
https://docs.conda.io/en/latest/miniconda.html

Flywheel Tools, Release 0.3.0

1.2.3 Download fw-heudiconv from pip

The fw-heudiconv code is hosted on pip: pip is a standard package-management system used to install and
manage software packages written in Python

Pip should be installed with your new environment, but you can ensure you have it by running:

$ which pip

Now, use pip to install fw-heudiconv:

$ pip install fw-heudiconv

1.2.4 Download the Flywheel SDK & CLI

You will need to download the flywheel software development kit in order to use fw-heudiconv. Follow the
instructions here to install, or run:

$ pip install flywheel-sdk

The flywheel CLI allows fw-heudiconv (or any other program you write) to communicate with Flywheel’s
database. Follow their instructions here to download and login.

Once installed and logged in, you should see your username when you run the following:

$ fw status
$ You are currently logged in as Tinashe Tapera to https://upenn.flywheel.io

1.2.5 Updating fw-heudiconv

If you already have fw-heudiconv and wish to update to the latest version, just run:

$ pip install --upgrade fw-heudiconv

1.2.6 Appendix — fw-heudiconv-validate

fw-heudiconv-validate is a convenience tool that wraps the official Bids Validator and pipes the output of
fw-heudiconv-export to it. It’s most useful for validating Flywheel data through a gear on the GUI.

To use fw-heuduiconv-validate on your local machine, you need to install node.js. This is not neces-
sary, however, and instead you are welcome to use fw-heudiconv-validate on your Flywheel site, or, use
fw-heudiconv-export to export data first, and then use the official Bids Validator available here.

1.3 Quick start guide

1.3.1 fw-heudiconv at the Command Line

1. Make sure you have the Flywheel CLI and SDK installed. Note that this is flywheel-sdk and NOT
flywheel.

2. Download the package from pip with pip install fw-heudiconv.

6 Chapter 1. Contents

https://pypi.org/project/flywheel-sdk/
https://docs.flywheel.io/hc/en-us/articles/360008162214
https://nodejs.org/en/
http://bids-standard.github.io/bids-validator/
https://docs.flywheel.io/hc/en-us/articles/360008162214-Installing-the-Command-Line-Interface-CLI-
https://pypi.org/project/flywheel-sdk/

Flywheel Tools, Release 0.3.0

3. Tabulate your DICOM header info with fw-heudiconv-tabulate --project <MY_PROJECT>
--path <OUTPUT_PATH>.

4. Design your heuristic file in Python.

5. Curate your dataset on Flywheel into BIDS: fw-heudiconv-curate --project <MY_PROJECT>
--heuristic <MY_HEURISTIC_FILE>. Use the flag --dry_run to test your heuristic.

To export the dataset to your machine: fw-heudiconv-export --project <MY_PROJECT> --path
<OUTPUT_DIR>.

Use the --subject <SUBJECT> and/or --session <SESSION> flags to use the tool on specific sub-
ject/session labels.

1.3.2 fw-heudiconv as a Flywheel Gear

1. Have the Flywheel Heudiconv gear installed on your Flywheel instance.

2. Design your heuristic file in Python and upload it to your project.

3. Run the Flywheel Heudiconv gear (accessible through Run Gear -> Analysis Gear), using your heuristic file as
the input.

To list the sequence information for your dataset: In the “Gear Configuration” window, type “Tabulate” in the
“Action” field, which will leave a sequence info table (.tsv) in the gear’s outputs.

To curate the dataset into BIDS: In the “Gear Configuration” window, type “Curate” in the “Action” field, which will
curate the dataset for BIDS. Click the “dry run” button to test your heuristic first (the gear log will print out all the
changes without applying them).

To export the dataset into BIDS for downloading to your machine: In the “Gear Configuration” window, type “Ex-
port” in the “Action” field, which will leave an exported BIDS dataset in the gear’s outputs. Click the “dry run” button
to test your output first (the gear log will print out the expected directory structure of an export).

1.3.3 flaudit as a Flywheel Gear

1. Have the flaudit gear installed on your Flywheel instance.

2. Select a template subject – an ideal subject who you know has been curated correctly and has had all the required
preprocessing gears run on them. Input this subject ID in the Template field in the config.

3. Hit Run!

1.4 Step-By-Step Guide

Let’s walk through an example of how to curate some simple data on Flywheel. For this tutorial, you will at the very
least need access to Flywheel and a text editor.

1.4.1 Step 1: Understanding Your Dataset in the Context of BIDS

Before you can curate the dataset into BIDS, it’s important to be able to predict how your dataset should look in BIDS.
If you don’t know what BIDS is, check the official readthedocs.

Our goal here will be to map DICOMs to NIfTIs named correctly in BIDS, including the directory structure, correct
metadata sidecars, and fieldmap files:

1.4. Step-By-Step Guide 7

https://bids-specification.readthedocs.io/en/stable/

Flywheel Tools, Release 0.3.0

To start, we need to figure out what we can use to create this “mapping”. In fw-heudiconv curation, this mapping
is called a heuristic, and we’ll use the DICOMs’ header information to create rules for this mapping. To extract this
information, we will use fw-heudiconv-tabulate to generate a seqinfo table.

1.4.2 fw-heudiconv-tabulate

In the Flywheel GUI, navigate to your project, and select the “Analysis” tab:

8 Chapter 1. Contents

Flywheel Tools, Release 0.3.0

Click the “Run Analysis Gear” button, which will drop down the analysis box. In this box, select Flywheel
HeuDiConv as the gear to run the analysis.

1.4. Step-By-Step Guide 9

Flywheel Tools, Release 0.3.0

From here, click the “Configuration” tab (there are no inputs required at this stage). This will allow you to set the
configuration for the gear. Under “Action”, select “Tabulate”, and make sure to uncheck dry_run. When ready, hit
“Run Gear”!

The same can be accomplished at the command line, with this command:

fw-heudiconv-tabulate --project FlywheelTools_TestData --path MY/OUTPUT/DIRECTORY/

10 Chapter 1. Contents

Flywheel Tools, Release 0.3.0

The Output

You should now see an analysis object appear in the GUI. This analysis object is associated with the project, since
we started it at the project level. If a blue gear is spinning, the gear is still running (this can include virtual machine
initialization and shut down time); a red X means it failed, but a green check means success! You should be able to
check the “Gear Logs” in the analysis object to read through stdout (all the commands and outputs) as the gear ran.

In the Results section of the analysis, Flywheel zips all the data it was instructed to save as outputs – in this case, the

1.4. Step-By-Step Guide 11

Flywheel Tools, Release 0.3.0

result of our tabulation. Download this file and unzip it, afterwhich you can open it in your table viewer or text editor
of choice.

Next, we’re going to use this table to curate one of the subjects. Fortunately, in the table viewer, we can use a filter to
only show data from one subject. Here, we pick subject 019465 using the patient_id column.

12 Chapter 1. Contents

Flywheel Tools, Release 0.3.0

1.4.3 Developing a Simple Heuristic

To start, open up any text editor, such as Notepad or TextEdit. We’re going to start by curating the anatomical T1w
image, whose DICOM is highlighted here:

In-depth knowledge of these functions is not necessary for this tutorial, but see The Heuristic File if you want to
understand each of them in earnest. First, copy and paste the create_key() function into a new file in your text

1.4. Step-By-Step Guide 13

Flywheel Tools, Release 0.3.0

editor:

def create_key(template, outtype=('nii.gz',), annotation_classes=None):
if template is None or not template:

raise ValueError('Template must be a valid format string')
return template, outtype, annotation_classes

Next, use this function to create a BIDS name for the T1w NIfTI you want:

def create_key(template, outtype=('nii.gz',), annotation_classes=None):
if template is None or not template:

raise ValueError('Template must be a valid format string')
return template, outtype, annotation_classes

Create Keys
t1w = create_key(

'sub-{subject}/ses-{session}/anat/sub-{subject}_ses-{session}_T1w')

When fw-heudiconv runs this heuristic, there will exist a variable called t1w, and it will have the string specifying
the BIDS file name and path for a T1w (relative to the BIDS root). The next step is making sure that the DICOM we
selected will be assigned to this variable. The next function we will use to do that is the infotodict function:

def infotodict(seqinfo):

info = {
t1w: []

}

for s in seqinfo:
if "MPRAGE" in s.series_description:

info[t1w].append(s.series_id)

return info

After the function is defined with def, we create the info object – a Python dictionary with one key, t1w, and an
empty list. Our goal is to populate this dictionary with the list of DICOMs who belong to the t1w key.

The input to this function, seqinfo, is each row from your seqinfo table. So looping over the object seqinfo gives
you access to each row of your table, where the variables in the table are accessed using Python.

In our example above, we access series_description and use Python logic to check if it contains the string
MPRAGE. We know our T1w is the only one that has this string:

14 Chapter 1. Contents

Flywheel Tools, Release 0.3.0

So we append the series_id value of that row (the unique identifier of the DICOM) to the list of files that should
be named this way – the t1w key. The heuristic at this point should look like this:

def create_key(template, outtype=('nii.gz',), annotation_classes=None):
if template is None or not template:

raise ValueError('Template must be a valid format string')

(continues on next page)

1.4. Step-By-Step Guide 15

Flywheel Tools, Release 0.3.0

(continued from previous page)

return template, outtype, annotation_classes

Create Keys
t1w = create_key(

'sub-{subject}/ses-{session}/anat/sub-{subject}_ses-{session}_T1w')

loop over the seqinfo table
def infotodict(seqinfo):

the dictionary of keys and list of files they correspond to
info = {

t1w: []
}

loop over each row of your seqinfo table
for s in seqinfo:

if the series description contains "MPRAGE",
add the DICOM identifier to the dictionary

if "MPRAGE" in s.series_description:
info[t1w].append(s.series_id)

a print line to tell us T1w was not found
print("This seqinfo is not the MPRAGE:", s.series_description)

return info

Note: A good habit for debugging is to print out the seqinfo rows that did not meet any tests and haven’t been
assigned to a key

Save this file as my_test_heuristic.py – we’re going to use it in the next section to curate the T1w image!

1.4.4 Curating The First Image with fw-heudiconv

The first step to curating the data is to upload this file to the Flywheel project. Although files can be attached to any
object, we recommend attaching this to the project so that all other projects can access it easily.

In the Flywheel GUI, access the “Information” tab of the project, and upload your heuristic file using the “Upload
Attachment” button:

16 Chapter 1. Contents

Flywheel Tools, Release 0.3.0

Now, we’re going to launch a gear on a single session. Pick a session from the subject we’ve been developing on
(019465 – in this case, the session is 9793). Gears run from the session level by default, though it is possible to launch
them from a subject.

In the top right, click “Run Gear”. As before, a dropdown should appear for you to select the Flywheel
HeuDiConv gear from the Analysis Gears list. This time, though, select an input — in the heuristic input box,
click “Select Input”. Here’ you’ll be presented with a drop down to let you pick which object to look for input files.
The hierarchy at the top shows that it’s looking at the current session and acquisitions:

1.4. Step-By-Step Guide 17

Flywheel Tools, Release 0.3.0

18 Chapter 1. Contents

Flywheel Tools, Release 0.3.0

Instead of this, click the Project label to select files attached to your project, and select your heuristic. In the “Config-
uration” tab, select “Curate” under the “action” option. You can leave the “dry_run” box checked – we will uncheck
it after this test run.

When you’re ready, hit “Run Gear”! Take note of the analysis’ name to refer back to later.

To monitor progress of the gear, click on the session’s “Provenance” tab. A grey pause symbol indicates that the job
is queued, a blue cog indicates that it is running, and a green check or red triangle indicates that the gear has finished,
successfully or unsuccessfully, respectively; refresh the page to update the status of running gears.

At the command line, this achieved with the following command:

fw-heudiconv-curate --project FlywheelTools_TestData --heuristic PATH/TO/DIRECTORY/my_
→˓test_heuristic.py --subject 019465 --session 9793

The Output

Next you can navigate to the output of the gear to see what happened. From within the session, click on either the
“Analysis” (for strictly any analysis gears that have run) or “Provenance” (for a listing of any kind of gear that has
operated on the session) and navigate to your recent fw-heudiconv analysis. From here, select “View Log”.

First, there are virtual machine instructions, stuff Flywheel uses to let us know what kind of virtual machine the gear
ran in. Then, we have initialization instructions from fw-heudiconv’s “gear manager”:

Gear Name: fw-heudiconv, Gear Version: 0.2.15_0.3.3
Executor: computebbl-31f3d27f, CPU: 8 cores, Memory: 55GB, Disk: 208GB, Swap: 32GB
Gear starting...

INFO: ==============: fw-heudiconv gear manager starting up :===============

INFO: Calling fw-heudiconv with the following settings:
INFO: Project: FlywheelTools_TestData
INFO: Subject(s): ['019465']
INFO: Session(s): ['9793']
INFO: Heuristic: /flywheel/v0/input/heuristic/my_test_heuristic.py
INFO: Action: Curate
INFO: Dry run: True
INFO: Call: fw-heudiconv-curate --verbose --project FlywheelTools_TestData --dry-run -
→˓-subject 019465 --session 9793 --heuristic /flywheel/v0/input/heuristic/my_test_
→˓heuristic.py
INFO: =================: fw-heudiconv curator starting up :=================

Pay attention to the Call directive; this prints the command line equivalent of what is running in the gear.

Next, the actual fw-heudiconv outputs. We see that fw-heudiconv first attempts to load your heuristic and then
lists out all of your seqinfo objects (the rows from the table in the first part) with the series_description
first, followed by other columns:

INFO: Loading heuristic file...
INFO: Heuristic loaded successfully!
INFO: Querying Flywheel server...
DEBUG: Found project: FlywheelTools_TestData (6075d65d0da0131135e9b471)
DEBUG: Found sessions:

9793 (607732a764d3dfc86e6510d4)
INFO: Applying heuristic to 9793 (1/1)...
DEBUG: Found SeqInfos:
Localizer:

(continues on next page)

1.4. Step-By-Step Guide 19

Flywheel Tools, Release 0.3.0

(continued from previous page)

[TR=0.0086 TE=0.004 shape=(512, 512, 3, -1) image_type=('ORIGINAL',
→˓'PRIMARY', 'M', 'ND', 'NORM')] (607732a75b936738e644aee8)
MPRAGE_TI1100_ipat2:

[TR=1.81 TE=0.00345 shape=(256, 192, 160, -1) image_type=('ORIGINAL',
→˓'PRIMARY', 'M', 'ND', 'NORM')] (607732a8b9d367cae5e9b0c5)
:
:
:

This is good, as we can confirm the table data with the seqinfo object the tool is using to curate your data. For exam-
ple, we know there’s a DICOM with the series description MPRAGE_TI1100_ipat2, and we searched specifically
for the string MPRAGE. So, did we catch this seqinfo?

HCP_REST_BOLD_MB8_469:
[TR=0.8 TE=0.037 shape=(936, 936, 469, -1) image_type=('ORIGINAL', 'PRIMARY', 'M',

→˓'MB', 'ND', 'MOSAIC')] (607732a864d3dfc86e6510d7)

DEBUG:
MPRAGE_TI1100_ipat2_2.nii.gz

sub-019465_ses-9793_T1w.nii.gz -> sub-019465/ses-9793/anat/sub-019465_ses-9793_
→˓T1w.nii.gz
INFO: Done!
INFO: ===================: Exiting fw-heudiconv curator :===================

Excellent! Now we know that the NIfTI from this DICOM, MPRAGE_TI1100_ipat2_2.nii.gz, will be mapped to a file
named sub-019465_ses-9793_T1w.nii.gz, and the path is listed there too. Additionally, we get printouts of
the seqinfo objects that didn’t get caught by our logic.

To see our BIDS data before curation, go to the session view and click the “BIDS View” toggle; there should be no
BIDS data:

20 Chapter 1. Contents

Flywheel Tools, Release 0.3.0

Now that we know it works, we can run it again with the “dry_run” box unchecked to apply the changes. The only
difference should be that the log lets you know the changes are being applied:

HCP_REST_BOLD_MB8_469:
[TR=0.8 TE=0.037 shape=(936, 936, 469, -1) image_type=('ORIGINAL', 'PRIMARY', 'M',

→˓'MB', 'ND', 'MOSAIC')] (607732a864d3dfc86e6510d7)

(continues on next page)

1.4. Step-By-Step Guide 21

Flywheel Tools, Release 0.3.0

(continued from previous page)

INFO: Applying changes to files...
DEBUG:
MPRAGE_TI1100_ipat2_2.nii.gz
sub-019465_ses-9793_T1w.nii.gz -> sub-019465/ses-9793/anat/sub-019465_ses-9793_T1w.
→˓nii.gz
INFO: Done!
INFO: ===================: Exiting fw-heudiconv curator :===================

Now, in the session view, hit the “BIDS View” toggle:

22 Chapter 1. Contents

Flywheel Tools, Release 0.3.0

We’ve successfully curated one of our images into BIDS!

1.4.5 Adding More Images

By now, it should be clear that as the tool loops over the rows in the seqinfo table, you can add all sorts of logic to
capture additional seqinfo objects and assign them to keys you create. Below, we edit the heuristic and add a key
for the BOLD data in our project, and use similar logic to assign data to the key:

1.4. Step-By-Step Guide 23

Flywheel Tools, Release 0.3.0

def create_key(template, outtype=('nii.gz',), annotation_classes=None):
if template is None or not template:

raise ValueError('Template must be a valid format string')
return template, outtype, annotation_classes

Create Keys

anatomical
t1w = create_key(

'sub-{subject}/ses-{session}/anat/sub-{subject}_ses-{session}_T1w')

fMRI scans
rest_bbl = create_key(

'sub-{subject}/{session}/func/sub-{subject}_{session}_task-rest_acq-BBL_bold')

loop over the seqinfo table
def infotodict(seqinfo):

the dictionary of keys and list of files they correspond to
now contains two scans
info = {

t1w: [], rest_bbl: []
}

loop over each row of your seqinfo table
for s in seqinfo:

if the series description contains "MPRAGE",
add the DICOM identifier to the dictionary

if "MPRAGE" in s.series_description:
info[t1w].append(s.series_id)

elif "bbl1_restbold" in protocol:
info[rest_bbl].append(s.series_id)

a print line to tell us T1w was not found
print("This seqinfo is not the MPRAGE or rs-fMRI:", s.series_description)

return info

But what if we have a fieldmap? Not only do we need to name it correctly, but we also have to make sure it points to
the BOLD data. We can do this quite flexibly using the special IntendedFor keyword. This keyword is set outside
of the infotodict for loop and makes use of existing keys:

def create_key(template, outtype=('nii.gz',), annotation_classes=None):
if template is None or not template:

raise ValueError('Template must be a valid format string')
return template, outtype, annotation_classes

Create Keys

anatomical
t1w = create_key(

'sub-{subject}/ses-{session}/anat/sub-{subject}_ses-{session}_T1w')

fMRI scans
rest_bbl = create_key(

(continues on next page)

24 Chapter 1. Contents

Flywheel Tools, Release 0.3.0

(continued from previous page)

'sub-{subject}/{session}/func/sub-{subject}_{session}_task-rest_acq-BBL_bold')

fieldmaps
b0_phase = create_key(

'sub-{subject}/{session}/fmap/sub-{subject}_{session}_phasediff')
b0_mag = create_key(

'sub-{subject}/{session}/fmap/sub-{subject}_{session}_magnitude{item}')

loop over the seqinfo table
def infotodict(seqinfo):

the dictionary of keys and list of files they correspond to
now contains two scans
info = {

t1w: [], rest_bbl: [], b0_mag: [], b0_phase: []
}

loop over each row of your seqinfo table
for s in seqinfo:

if the series description contains "MPRAGE",
add the DICOM identifier to the dictionary

if "MPRAGE" in s.series_description:
info[t1w].append(s.series_id)

elif "bbl1_restbold" in s.series_description:
info[rest_bbl].append(s.series_id)

elif "B0map" in s.series_description and "M" in s.image_type:
info[b0_mag].append(s)

elif "B0map" in s.series_description and "P" in s.image_type:
info[b0_phase].append(s)

a print line to tell us T1w was not found
print("Protocol not found!:", s.series_description)

return info

IntendedFor = {
b0_phase: [

'{session}/func/sub-{subject}_{session}_task-rest_acq-BBL_bold.nii.gz'
],
b0_mag: [

'{session}/func/sub-{subject}_{session}_task-rest_acq-BBL_bold.nii.gz'
]

}

Notice that in this heuristic, we use the special {item} keyword in the key for the magnitude fieldmaps. This keeps us
from having to write multiple keys. The keyword is iterated over automatically within the NIfTIs for this acquisition.
Additionally, we access the image_type column when differentiating between the magnitude and phase fieldmaps.

Lastly, the IntendedFor keyword: it’s a dictionary, like info, containing the keys for each of our fieldmaps, and
the values for each key are the files we expect this fieldmap to correct. In this case we must specifically list the files
out. Update this heuristic upload it to Flywheel, and try out curation with it.

1.4. Step-By-Step Guide 25

Flywheel Tools, Release 0.3.0

1.4.6 Wrapping Up

In this walkthrough, you should have learned how to curate your data with fw-heudiconv, starting with discovering
data in your DICOM headers, crafting a heuristic for a single T1w image, and then applying it to a session. Next, we
went over how to add more images, including how to point fieldmaps to BOLD scans. Now, you’re ready to investigate
more functionality of fw-heudiconv. Take a look at the The Heuristic File page for an in-depth look at what more
features fw-heudiconv curation can offer, and the tips page for inspiration on how to come up with more creative
solutions.

1.5 The Heuristic File

BIDS curation of data on Flywheel is implemented through the use of a heuristic file. Like the name implies, a
heuristic is a set of simple and efficient rules that, for our purposes, will help map DICOM header info to a BIDS-valid
filename.

The heuristic’s rules are defined in a Python file which is used as input to the curate command line tool
fw_heudiconv.cli.curate. Using Python, it’s possible to accomplish a wide variety of logical operations
to define these relationships, but in order to communicate with Flywheel, fw-heudiconv expects a few reserved
functions and data structures. These functions are documented below.

1.5.1 How fw-heudiconv Uses a Heuristic

Once fw-heudiconv has parsed arguments and filtered out the target sessions to curate, fw-heudiconv then
gathers all of the DICOM header information in a session’s acquisitions. In the program, we call these objects
seqinfo objects. The program loops over each of these seqinfo objects and tests each one to see if the heuristic
has defined a BIDS filename for a seqinfo of this type. If so, it adds a reference to this seqinfo to a special
internal list. At the end of the checks, fw-heudiconv goes through the list of references, adding BIDS metadata to
each of the NIfTIs the references point to.

1.5.2 Heuristic Functions

This heuristic demonstrates all of the functionalities available in fw-heudiconv data curation.

Mandatory functions

There are two mandatory functions that are expected in a heuristic. The first is the create_key() function. This
function allows the heuristic to define BIDS- valid filenames for each scan type and category you expect to find. Once
defined, you can then assign keys to variables to be used in the next mandatory function.

create_key(template, outtype=(’nii.gz’,), annotation_classes=None)
Create a BIDS key

Use this function to create a BIDS key with keywords to be populated at runtime. Keys must be BIDS valid and
have the full BIDS path; the file extension is not required. Available keywords are as follows:

{subject} The subject label
{session} The session label
{item} An iterator to be used within an acquisition

Example:

26 Chapter 1. Contents

Flywheel Tools, Release 0.3.0

>>> t1w = create_key('sub-{subject}/{session}/anat/sub-{subject}_{session}_T1w')
>>> t1w
('sub-{subject}/{session}/anat/sub-{subject}_{session}_T1w', ('nii.gz',), None)
>>> rest_mb = create_key('sub-{subject}/{session}/func/sub-{subject}_{session}_
→˓task-rest_acq-multiband_bold')
>>> rest_mb
('sub-{subject}/{session}/func/sub-{subject}_{session}_task-rest_acq-multiband_
→˓bold', ('nii.gz',), None)

The next mandatory function is infotodict(). This function does the heavy lifting — it loops over the seqinfo
objects, and uses boolean logic in each to decide if it is going to be assigned to a BIDS key.

infotodict(seqinfo)
Heuristic evaluator for mapping seqinfos to BIDS filenames

A function for defining the boolean logic that determines how to map a seqinfo to a key made with
create_key(). The seqinfo object has a number of attributes that can be tested in boolean logic; when a
match is found, the series_id attribute is added to a list that tracks the matches.

All usable attributes are listed as columns in the output of the tabulate tool (for example, all DICOMs have a
series_description, which shows up as a column in the output of fw-heudiconv-tabulate; you
can access this attribute using s.series_description).

The return object must be a dictionary where each key is a key variable already earlier defined in the namespace,
and the corresponding value is a list of series_id.

We find that the easiest way to accomplish this (and debug iteratively) is with the use of a for-loop.

Parameters seqinfo – a fw-heudiconv seqinfo object, enumerating DICOM metadata as at-
tributes

Returns dictionary – a dictionary of keys and a list of seqinfo series IDs that match the key

Example:

>>> t1w = create_key('sub-{subject}/{session}/anat/sub-{subject}_{session}_T1w')
>>> t1w
('sub-{subject}/{session}/anat/sub-{subject}_{session}_T1w', ('nii.gz',), None)
>>> rest_mb = create_key('sub-{subject}/{session}/func/sub-{subject}_{session}_
→˓task-rest_acq-multiband_bold')
>>> rest_mb
('sub-{subject}/{session}/func/sub-{subject}_{session}_task-rest_acq-multiband_
→˓bold', ('nii.gz',), None)

>>> def infotodict(seqinfo):
... info = {t1w:[], rest_mb:[]}
... for s in seqinfo:
... protocol = s.protocol_name.lower()
... if "mprage" in protocol:
... info[t1w].append(s.series_id)
... elif "rest" in protocol:
... info[rest_mb].append(s.series_id)
... else:
... print('Series {} not found!'.format(protocol_name))
... return info

1.5. The Heuristic File 27

Flywheel Tools, Release 0.3.0

Optional variables

There are optional variables you can use to hardcode metadata into the BIDS sidecar or define fieldmap intentions
(MetadataExtras and IntendedFor).

MetadataExtras = {}
Special variable defining metadata to hardcodeinto the BIDS sidecar.

Use this variable to define metadata that you want to hardcode into the BIDS sidecar. For example, we could
use this to hardcode the EchoTime for phase fieldmaps, or for use in ASL, we can use this to hardcode metadata
that sometimes isn’t extracted by dcm2niix.

This variable must be a dictionary, where the key is a key variable already earlier defined in the namespace,
and the value is itself a dictionary of metadata.

Example (we’ve already defined keys b0_phase and asl with create_key):

>>> MetadataExtras = {
b0_phase: {

"EchoTime1": 0.00412,
"EchoTime2": 0.00658

},
asl: {

"PulseSequenceType": "3D_SPRIAL",
"PulseSequenceDetails" : "WIP" ,
"LabelingType": "PCASL",
"LabelingDuration": 1.8,
"PostLabelingDelay": 1.8,
"BackgroundSuppression": "Yes",
"M0":10,
"LabelingSlabLocation":"X",
"LabelingOrientation":"",
"LabelingDistance":2,
"AverageLabelingGradient": 34,
"SliceSelectiveLabelingGradient":45,
"AverageB1LabelingPulses": 0,
"LabelingSlabThickness":2,
"AcquisitionDuration":123,
"BackgroundSuppressionLength":2,
"BackgroundSuppressionPulseTime":2,
"VascularCrushingVenc": 2,
"PulseDuration": 1.8,
"InterPulseSpacing":4,
"PCASLType":"balanced",
"PASLType": "",
"LookLocker":"True",
"LabelingEfficiency":0.72,
"BolusCutOffFlag":"False",
"BolusCutOffTimingSequence":"False",
"BolusCutOffDelayTime":0,
"BolusCutOffTechnique":"False"

}
}

IntendedFor = {}
Special variable mapping fieldmaps to scans.

Use this variable to define which files your fieldmaps are intended to correct for. You do this by using
the fieldmap keys defined with create_key, and a list of filenames where the keywords {subject},

28 Chapter 1. Contents

Flywheel Tools, Release 0.3.0

{session} and others are used for ambiguity. fw-heudiconv will check for each file and try to map
IntendedFor’s appropriately.

This variable must be a dictionary, where the key is a key variable already earlier defined in the namespace,
and the value is a list of filename templates.

Example (we’ve already defined b0_phase, b0_phase, pe_rev with create_key):

>>> IntendedFor = {
b0_phase: [

'{session}/func/sub-{subject}_{session}_task-rest_acq-multiband_bold.nii.
→˓gz',

'{session}/func/sub-{subject}_{session}_task-rest_acq-singleband_bold.nii.
→˓gz',

'{session}/func/sub-{subject}_{session}_task-fracback_acq-singleband_bold.
→˓nii.gz',

'{session}/func/sub-{subject}_{session}_task-face_acq-singleband_bold.nii.
→˓gz'

],
b0_mag: [

'{session}/func/sub-{subject}_{session}_task-rest_acq-multiband_bold.nii.
→˓gz',

'{session}/func/sub-{subject}_{session}_task-rest_acq-singleband_bold.nii.
→˓gz',

'{session}/func/sub-{subject}_{session}_task-fracback_acq-singleband_bold.
→˓nii.gz',

'{session}/func/sub-{subject}_{session}_task-face_acq-singleband_bold.nii.
→˓gz'

],
pe_rev: [

'{session}/dwi/sub-{subject}_{session}_acq-multiband_dwi.nii.gz',
]

}

Replace* functions

There are optional functions that assist with Flywheel-specific data manipulation. The first of these is the
ReplaceSubject() and ReplaceSession() functions, which can be used to manipulate the label of a Fly-
wheel object before it is inserted into a BIDS filename (for example, to remove leading zeroes). These functions are
expected to have a string as input (the Flywheel label) and the return object to be a string of your making. These
functions don’t affect the source data objects on Flywheel, only the metadata BIDS fields.

ReplaceSubject(label)
Manipulate the BIDS subject label

Use this function to define how to manipulate a subject’s label on Flywheel into a BIDS valid <subject> value

Parameters label (string) – the Flywheel subject label

Returns string – the manipulated string label

Example – stripping leading zeroes from a subject label:

>>> def ReplaceSubject(label):
... return label.lstrip('0')
>>> ReplaceSubject('01234')
'1234'

1.5. The Heuristic File 29

Flywheel Tools, Release 0.3.0

ReplaceSession(label)
Manipulate the BIDS session label

Use this function to define how to manipulate a session’s label on Flywheel into a BIDS valid <session> value

Parameters label (string) – the Flywheel session label

Returns string – the manipulated string label

Example – enforcing all sessions are labelled 01:

>>> def ReplaceSession(label):
... return '01'
>>> ReplaceSession('SomeSession')
'01'

Attach* functions

Then there are the AttachToProject() and AttachToSession() functions, which are used to dynamically
generate and upload BIDS metadata files, like participant or event files. We’ve found these functions useful for
generating and uploading ASL context files, but can be used for any dynamic file attachment purpose, so long as the
data can be parsed into a raw text string.

AttachToSession()
Attach BIDS data files to a project at the session level

Use this function to dynamically generate files and upload them to the BIDS project at the session level. The
filename must be BIDS valid. Examples include the events.tsv file or the aslcontext.tsv file.

This function takes no input but must return a dictionary (or list of dictionaries) with three parts:

1. name: the BIDS filename, with optional keywords for formatting (e.g. {subject}).

2. data: the data to upload, which must be in literal string format.

3. type: the file MIMEType; see Link here for available types.

Returns dictionary – the dictionary containing BIDS data

Example – creating an ASL context file from scratch to attach to each session:

>>> def AttachToSession():
... attachment1 = {
... 'name': '{subject}/{session}/perf/{subject}_{session}_aslcontext.tsv',
... 'data': '\n'.join(['Control', 'Label', 'Control', 'Label']),
... 'type': 'text/tab-separated-values'
... }
... return attachment1

>>> AttachToSession()
{'name': '{subject}/{session}/perf/{subject}_{session}_aslcontext.tsv', 'data':
→˓'Control\nLabel\nControl\nLabel', 'type': 'text/tab-separated-values'}

AttachToProject()
Attach BIDS data files to a project at the session level

Use this function to dynamically generate files and upload them to the BIDS project at the session level. The
filename must be BIDS valid. Examples include the README or CHANGES file.

This function takes no input but must return a dictionary (or list of dictionaries) with three parts:

30 Chapter 1. Contents

https://www.freeformatter.com/mime-types-list.html

Flywheel Tools, Release 0.3.0

1. name: the BIDS filename, with optional keywords for formatting (e.g. {subject}).

2. data: the data to upload, which must be in literal string format.

3. type: the file MIMEType; see Link here for available types.

Returns dictionary – the dictionary containing BIDS data

Example – Adding a README:

>>> def AttachToSession():
... attachment1 = {
... 'name': 'README',
... 'data': 'This is my BIDS dataset',
... 'type': 'text/plain'
... }
... return attachment1

>>> AttachToSession()
{'name': 'README', 'data': 'This is my BIDS dataset', 'type': 'text/plain'}

1.5.3 A Real Example

In all, a heuristic file could look like this:

import os

def create_key(template, outtype=('nii.gz',), annotation_classes=None):
if template is None or not template:

raise ValueError('Template must be a valid format string')
return template, outtype, annotation_classes

Create Keys
t1w = create_key(

'sub-{subject}/{session}/anat/sub-{subject}_{session}_T1w')
t2w = create_key(

'sub-{subject}/{session}/anat/sub-{subject}_{session}_T2w')
dwi = create_key(

'sub-{subject}/{session}/dwi/sub-{subject}_{session}_acq-multiband_dwi')

Field maps
b0_phase = create_key(

'sub-{subject}/{session}/fmap/sub-{subject}_{session}_phasediff')
b0_mag = create_key(

'sub-{subject}/{session}/fmap/sub-{subject}_{session}_magnitude{item}')
pe_rev = create_key(

'sub-{subject}/{session}/fmap/sub-{subject}_{session}_acq-multiband_dir-j_epi')

fmri scans
rest_mb = create_key(

'sub-{subject}/{session}/func/sub-{subject}_{session}_task-rest_acq-multiband_bold
→˓')
rest_sb = create_key(

'sub-{subject}/{session}/func/sub-{subject}_{session}_task-rest_acq-singleband_bold
→˓')
fracback = create_key(

(continues on next page)

1.5. The Heuristic File 31

https://www.freeformatter.com/mime-types-list.html

Flywheel Tools, Release 0.3.0

(continued from previous page)

'sub-{subject}/{session}/func/sub-{subject}_{session}_task-fracback_acq-singleband_
→˓bold')
face = create_key(

'sub-{subject}/{session}/func/sub-{subject}_{session}_task-face_acq-singleband_bold
→˓')

ASL scans
asl = create_key(

'sub-{subject}/{session}/perf/sub-{subject}_{session}_asl')
asl_dicomref = create_key(

'sub-{subject}/{session}/perf/sub-{subject}_{session}_acq-ref_asl')
m0 = create_key(

'sub-{subject}/{session}/perf/sub-{subject}_{session}_m0')
mean_perf = create_key(

'sub-{subject}/{session}/perf/sub-{subject}_{session}_mean-perfusion')

def infotodict(seqinfo):

last_run = len(seqinfo)

info = {t1w:[], t2w:[], dwi:[], b0_phase:[],
b0_mag:[], pe_rev:[], rest_mb:[], rest_sb:[],
fracback:[], asl_dicomref:[], face:[], asl:[],
m0:[], mean_perf:[]}

def get_latest_series(key, s):
if len(info[key]) == 0:

info[key].append(s.series_id)
else:
info[key] = [s.series_id]

for s in seqinfo:
protocol = s.protocol_name.lower()
if "mprage" in protocol:

get_latest_series(t1w,s)
elif "t2_sag" in protocol:

get_latest_series(t2w,s)
elif "b0map" in protocol and "M" in s.image_type:

info[b0_mag].append(s.series_id)
elif "b0map" in protocol and "P" in s.image_type:

info[b0_phase].append(s.series_id)
elif "topup_ref" in protocol:

get_latest_series(pe_rev, s)
elif "dti_multishell" in protocol and not s.is_derived:

get_latest_series(dwi, s)

elif s.series_description.endswith("_ASL"):
get_latest_series(asl, s)

elif protocol.startswith("asl_dicomref"):
get_latest_series(asl_dicomref, s)

elif s.series_description.endswith("_M0"):
get_latest_series(m0, s)

elif s.series_description.endswith("_MeanPerf"):
get_latest_series(mean_perf, s)

elif "fracback" in protocol:
(continues on next page)

32 Chapter 1. Contents

Flywheel Tools, Release 0.3.0

(continued from previous page)

get_latest_series(fracback, s)
elif "face" in protocol:

get_latest_series(face,s)
elif "rest" in protocol:

if "MB" in s.image_type:
get_latest_series(rest_mb,s)

else:
get_latest_series(rest_sb,s)

elif s.patient_id in s.dcm_dir_name:
get_latest_series(asl, s)

else:
print("Series not recognized!: ", s.protocol_name, s.dcm_dir_name)

return info

MetadataExtras = {
b0_phase: {

"EchoTime1": 0.00412,
"EchoTime2": 0.00658

},
asl: {

"PulseSequenceType": "3D_SPRIAL",
"PulseSequenceDetails" : "WIP" ,
"LabelingType": "PCASL",
"LabelingDuration": 1.8,
"PostLabelingDelay": 1.8,
"BackgroundSuppression": "Yes",
"M0":10,
"LabelingSlabLocation":"X",
"LabelingOrientation":"",
"LabelingDistance":2,
"AverageLabelingGradient": 34,
"SliceSelectiveLabelingGradient":45,
"AverageB1LabelingPulses": 0,
"LabelingSlabThickness":2,
"AcquisitionDuration":123,
"BackgroundSuppressionLength":2,
"BackgroundSuppressionPulseTime":2,
"VascularCrushingVenc": 2,
"PulseDuration": 1.8,
"InterPulseSpacing":4,
"PCASLType":"balanced",
"PASLType": "",
"LookLocker":"True",
"LabelingEfficiency":0.72,
"BolusCutOffFlag":"False",
"BolusCutOffTimingSequence":"False",
"BolusCutOffDelayTime":0,
"BolusCutOffTechnique":"False"

}
}

IntendedFor = {
b0_phase: [

'{session}/func/sub-{subject}_{session}_task-rest_acq-multiband_bold.nii.gz',
'{session}/func/sub-{subject}_{session}_task-rest_acq-singleband_bold.nii.gz',

(continues on next page)

1.5. The Heuristic File 33

Flywheel Tools, Release 0.3.0

(continued from previous page)

'{session}/func/sub-{subject}_{session}_task-fracback_acq-singleband_bold.nii.
→˓gz',

'{session}/func/sub-{subject}_{session}_task-face_acq-singleband_bold.nii.gz'
],
b0_mag: [],
pe_rev: [

'{session}/dwi/sub-{subject}_{session}_acq-multiband_dwi.nii.gz',
]

}

def ReplaceSubject(label):
return label.lstrip("0")

def ReplaceSession(label):
return label.lstrip("0")

def AttachToSession():

example: uploading a json file
import json

adict = {
"id": "04",
"name": "foo",
"scan": "blah"

}

json_object = json.dumps(adict, indent = 4) # json.dumps() returns a string!

attachment1 = {
'name': 'jsonexample.json',
'data': json_object,
'type': 'application/json'

}

return attachment1

def AttachToProject():

example: uploading a single CHANGES file

attachment1 = {
'name': 'CHANGES',
'data': 'This is a CHANGES file!',
'type': 'text/plain'

}

return attachment1

34 Chapter 1. Contents

Flywheel Tools, Release 0.3.0

1.6 Usage

fw-heudiconv can be run either from the command line, or on Flywheel as a gear. See below for command line
instructions.

1.6.1 Tabulate

Tabulate DICOM header info from a project on Flywheel

usage: fw-heudiconv-tabulate [-h] --project PROJECT [--path PATH]
[--subject SUBJECT [SUBJECT ...]]
[--session SESSION [SESSION ...]] [--verbose]
[--dry-run] [--unique | --no-unique]
[--api-key API_KEY]

Named Arguments

--project The project in flywheel

--path Path to download .tsv file

Default: “.”

--subject The subject label(s)

--session The session label(s)

--verbose Print ongoing messages of progress

Default: False

--dry-run Don’t apply changes

Default: False

--unique Default: False

--no-unique Default: True

--api-key API Key

1.6.2 Curate

Use a heudiconv heuristic to curate data into BIDS on flywheel

usage: fw-heudiconv-curate [-h] --project PROJECT --heuristic HEURISTIC
[--subject SUBJECT [SUBJECT ...]]
[--session SESSION [SESSION ...]] [--verbose]
[--dry-run] [--api-key API_KEY]

Named Arguments

--project The project in flywheel

--heuristic Path to a heudiconv-style heuristic file

--subject The subject label(s)

1.6. Usage 35

Flywheel Tools, Release 0.3.0

--session The session label(s)

--verbose Print ongoing messages of progress

Default: False

--dry-run Don’t apply changes

Default: False

--api-key API Key

1.6.3 Export

Export BIDS-curated data from Flywheel

usage: fw-heudiconv-export [-h] --project PROJECT [--path PATH]
[--subject SUBJECT [SUBJECT ...]]
[--session SESSION [SESSION ...]]
[--folders FOLDERS [FOLDERS ...]]
[--attachments ATTACHMENTS [ATTACHMENTS ...]]
[--dry-run] [--destination DESTINATION]
[--directory-name DIRECTORY_NAME]
[--api-key API_KEY] [--verbose]

Named Arguments

--project The project in flywheel

--path The target directory to download [DEPRECATED. PLEASE USE <DESTINA-
TION> INSTEAD]

--subject The subject(s) to export

--session The session(s) to export

--folders The BIDS folders to export

Default: [‘anat’, ‘dwi’, ‘fmap’, ‘func’, ‘perf’]

--attachments Only download attachment files matching these names

--dry-run Don’t apply changes (only print the directory tree to the console)

Default: False

--destination Path to destination directory

Default: “.”

--directory-name Name of destination directory

Default: “bids_directory”

--api-key API Key

--verbose Print ongoing messages of progress

Default: False

36 Chapter 1. Contents

Flywheel Tools, Release 0.3.0

1.6.4 Validate

Validate BIDS-curated data on Flywheel. A simple wrapper around the original BIDS Validator https://github.com/
bids-standard/bids-validator

usage: fw-heudiconv-validate [-h] [--directory DIRECTORY]
[--project PROJECT [PROJECT ...]]
[--subject SUBJECT [SUBJECT ...]]
[--session SESSION [SESSION ...]] [--verbose]
[--tabulate TABULATE] [--api-key API_KEY]

Named Arguments

--directory Temp space used for validation

Default: “.”

--project The project on Flywheel

--subject The subject(s) on Flywheel to validate

--session The session(s) on Flywheel to validate

--verbose Pass on <VERBOSE> flag to bids-validator

Default: False

--tabulate Directory to save tabulation of errors

Default: “.”

--api-key API Key

1.6.5 Clear

Go nuclear: clear BIDS data from Flywheel

usage: fw-heudiconv-clear [-h] --project PROJECT [PROJECT ...]
[--subject SUBJECT [SUBJECT ...]]
[--session SESSION [SESSION ...]] [--verbose]
[--dry-run] [--api-key API_KEY]

Named Arguments

--project The project in flywheel

--subject The subject label(s)

--session The session label(s)

--verbose Print ongoing messages of progress

Default: False

--dry-run Don’t apply changes

Default: False

--api-key API Key

1.6. Usage 37

https://github.com/bids-standard/bids-validator
https://github.com/bids-standard/bids-validator

Flywheel Tools, Release 0.3.0

1.6.6 flaudit

flaudit runs as a gear on Flywheel. See the Quick Start guide for usage.

1.7 Tips & Tricks: Curating Creatively

Because fw-heudiconv is built in Python, you have access to anything Python can do when you build your heuristic
(as long as you use the special functions and data structures). Here, we show a few fun ways we’ve used Python to
solve a few tricky heuristic challenges.

1.7.1 Dynamically Replacing Subject/Session Labels

It might be useful to dynamically replace a Flywheel subject’s label with some other label in BIDS — for example, in
the event that you need to withhold personally identifying information from a BIDS output you share, but still keep
the original Flywheel subject’s label, for consistency. Well this can be accomplished in the Replace*() functions
using a DataFrame with pandas. If you’re running fw-heudiconv from disk, you can read in a file at the same
time that the heuristic is parsed:

def ReplaceSubject(label):

import pandas as pd

df = pd.read_csv('DeIdentifiedNames.csv')

And then filter your DataFrame as necessary:

def ReplaceSubject(label):

import pandas as pd

df = pd.read_csv('DeIdentifiedNames.csv')
target = df[(df.first_name == "Jason")]
replacement = target['new_ID'].values[0]

return str(replacement)

1.7.2 DataFrames to Strings

In order to use the AttachTo*() function, your data needs to be converted into a string. To attach a data-frame
object, use the following steps:

def AttachToSession():

example: uploading multiple files -- a json, and a TSV
import json

adict = {
"id": "04",
"name": "foo",
"scan": "blah"

}

(continues on next page)

38 Chapter 1. Contents

Flywheel Tools, Release 0.3.0

(continued from previous page)

json_object = json.dumps(adict, indent = 4)

attachment1 = {
'name': 'jsonexample.json',
'data': json_object,
'type': 'application/json'

}
import pandas as pd
raw_data = {'first_name': ['Jason', 'Molly', 'Tina', 'Jake', 'Amy'],

'last_name': ['Miller', 'Jacobson', 'Ali', 'Milner', 'Cooze'],
'age': [42, 52, 36, 24, 73],
'preTestScore': [4, 24, 31, 2, 3],
'postTestScore': [25, 94, 57, 62, 70]}

df = pd.DataFrame(raw_data, columns = ['first_name', 'last_name', 'age',
→˓'preTestScore', 'postTestScore'])

attachment2 = {
'name': '{subject}/{session}/perf/{subject}_{session}_aslcontext.tsv',
'data': df.to_csv(index=False, sep='\t'), # .to_csv() with no file argument

→˓returns a string!
'type': 'text/tab-separated-values'

}

this is also an opportunity to demonstrate how to attach multiple files -- just
→˓use a list!

return [attachment1, attachment2]

1.7.3 Arterial Spin Labelling Data

ASL is a BIDS protocol proposal that is fast on its way to being accepted into the official BIDS spec, but is still being
reviewed and updated. At present, ASL in BIDS requires a special kind of events file, the aslcontext file. This is a
TSV file not unlike the events.tsv file given for BOLD task data, but is used in this case to denote the order of label vs.
control in the volumes. The file might look like this:

For this purpose, we can use the AttachToSession() function. You could do as above and read in a file on disk
within the function, but you could be even cleverer and instead dynamically create this file:

def AttachToSession():

NUM_VOLUMES=10
data = ['control', 'label'] * NUM_VOLUMES
data = '\n'.join(data)
data = 'volume_type\n' + data # the data is now a string; perfect!

output_file = {

'name': '{subject}_{session}_aslcontext.tsv',
'data': data,
'type': 'text/tab-separated-values'

}

return output_file

This could be especially useful if you don’t want to rely on external data files to curate your project. You can
find out the correct number of LABEL-CONTROL pairs from the DICOM header info found in the output of

1.7. Tips & Tricks: Curating Creatively 39

Flywheel Tools, Release 0.3.0

fw-heudiconv-tabulate, which will also help you hard code the extra ASL metadata and insert it into the
MetadataExtras variable.

40 Chapter 1. Contents

CHAPTER 2

Indices and tables

• genindex

• modindex

• search

41

Flywheel Tools, Release 0.3.0

42 Chapter 2. Indices and tables

Index

A
AttachToProject() (in module

fw_heudiconv.example_heuristics.demo),
30

AttachToSession() (in module
fw_heudiconv.example_heuristics.demo),
30

C
create_key() (in module

fw_heudiconv.example_heuristics.demo),
26

I
infotodict() (in module

fw_heudiconv.example_heuristics.demo),
27

IntendedFor (in module
fw_heudiconv.example_heuristics.demo),
28

M
MetadataExtras (in module

fw_heudiconv.example_heuristics.demo),
28

R
ReplaceSession() (in module

fw_heudiconv.example_heuristics.demo),
29

ReplaceSubject() (in module
fw_heudiconv.example_heuristics.demo),
29

43

	Contents
	BIDS & FlywheelTools Explained
	Installation
	Quick start guide
	Step-By-Step Guide
	The Heuristic File
	Usage
	Tips & Tricks: Curating Creatively

	Indices and tables
	Index

